

Solid-phase synthesis of pyrido[2,3-*d*]pyrimidin-7-ones

Mauro Angiolini, Domenico Fusar Bassini, Markus Gude[†] and Maria Menichincheri*

Discovery Oncology, Nerviano Medical Sciences, viale Pasteur 10, 20014 Nerviano, Italy

Received 28 September 2005; revised 10 October 2005; accepted 11 October 2005

Available online 25 October 2005

Abstract—A novel solid-phase method for the synthesis of 4-methyl-pyrido[2,3-*d*]pyrimidin-7-one compounds with two diversity points is described. The polymer supported methylsulfonyl derivatives **A₃**, achieved by coupling compound **G** with different resin-bound amines **A₁**, followed by oxidation with MCPBA, are substituted with several amines R₁R₂NH. Final cleavage affords 126 compounds having formula **H** in good yield and purity.

© 2005 Elsevier Ltd. All rights reserved.

In drug discovery combinatorial chemistry based on pharmacophoric scaffolds is a promising approach towards new bioactive entities. In this respect, pyrido[2,3-*d*]pyrimidin-7-ones having structure **1** represent an attractive heterocyclic class due to their biological effects in particular as kinase inhibitors (Fig. 1).^{1–6}

Thus, in the effort to identify new active compounds we envisaged the opportunity to design a chemical library of potential biological interest based on structure **2** (Fig. 1). As far as our knowledge, solid-phase expansion of such heterocyclic series is scarcely documented in the literature. So we undertook a synthetic study for the development of a solid supported methodology with

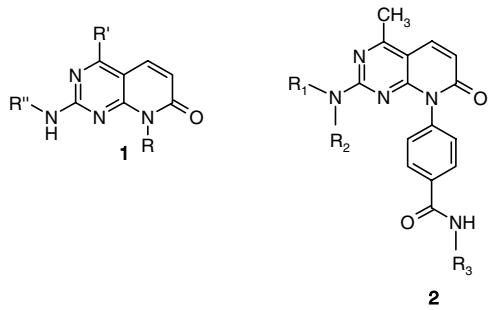
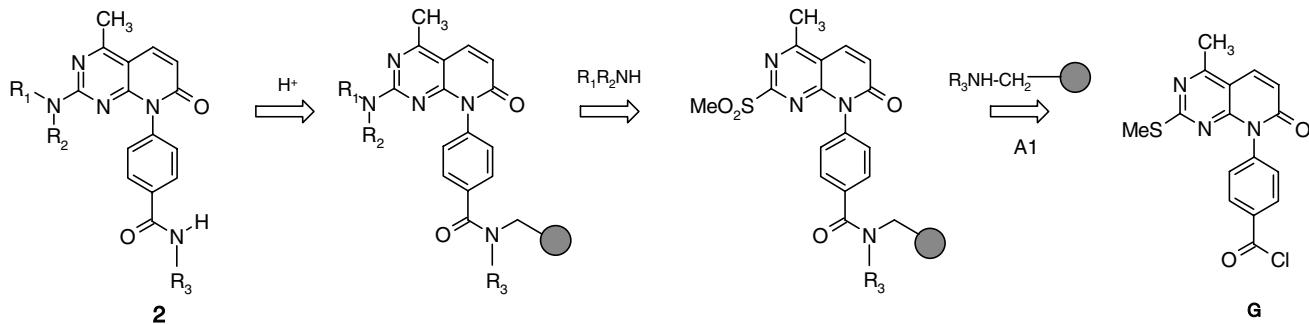


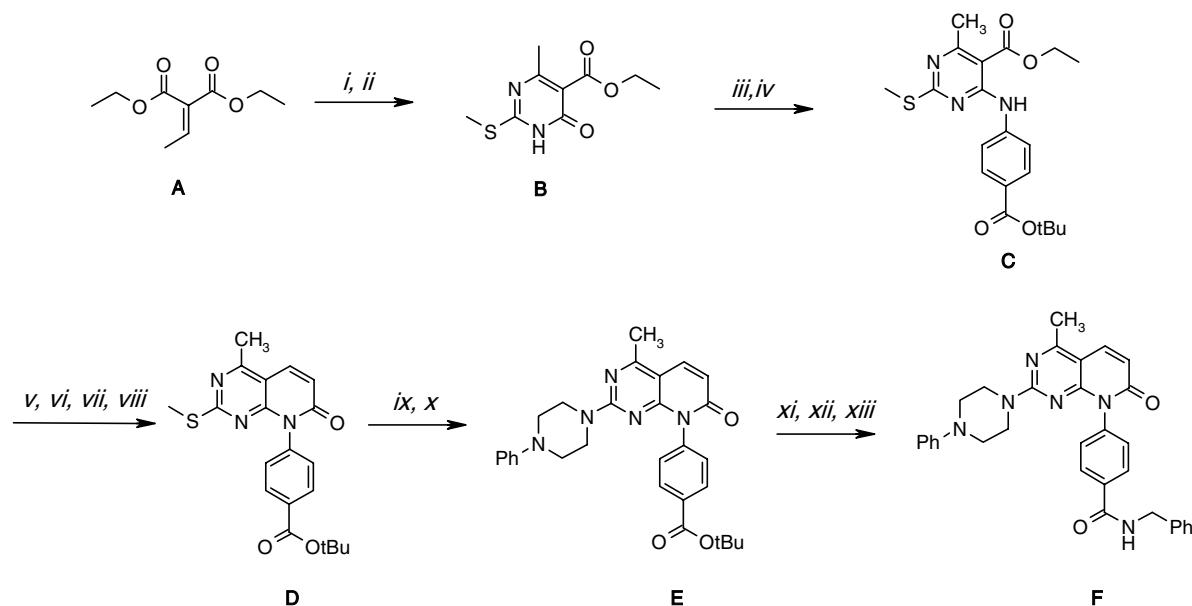
Figure 1.

Keywords: Pyrido[2,3-*d*]pyrimidin-7-one; Solid-phase; Formyl resin; Scaffold; Library.

* Corresponding author. Tel.: +39 0331 581928; fax: +39 0331 581757; e-mail: maria.menichincheri@nervianoms.com


[†] Present address: Actelion AG, Allschwil, Switzerland.

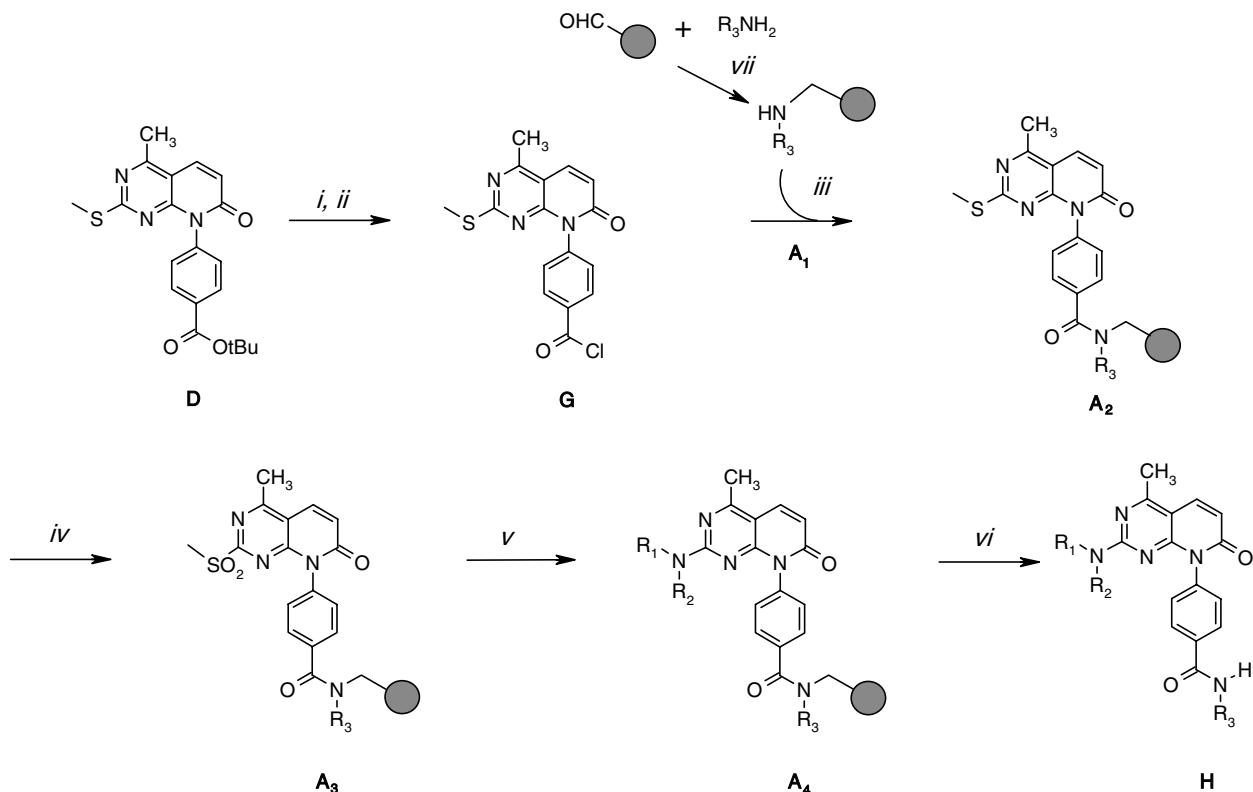
the aim to synthesize a 4-methyl-pyrido[2,3-*d*]pyrimidin-7-one based library with two diversity points, one at position 2 and the other at *para* position of the phenyl ring present on the scaffold.


The retrosynthetic route is reported in Scheme 1 where the aryl amide moiety is first introduced with the use of a solid supported amine **A₁**. The amine at position 2 is derived from a nucleophilic displacement of a methylsulfone. The final compounds of general formula **2** are easily released from the resin under acidic conditions with trifluoroacetic acid (Scheme 1).

As the first step a synthetic route to 4-methyl-pyrido[2,3-*d*]pyrimidin-7-one scaffold **D**, a key intermediate both for solution and solid-phase methods, was developed according to Scheme 2. Thus condensation between the commercially available diethyl ethylidene malonate **A** with *S*-methyl-isothiourea followed by oxidation with NBS smoothly affords compound **B**. Treatment of **B** with POCl₃ and nucleophilic aromatic substitution at position 6 with *tert*-butyl-4-aminobenzoate gives the pyrimidine derivative **C** in good yield. Selective reduction of the ethyl ester **C** followed by oxidation with MnO₂ affords the aldehyde, which in turn undergoes Horner–Emmons olefination and final intramolecular cyclization gives scaffold **D**. This route is amenable to large scale synthesis (20 g). Oxidation of **D** with MCPBA gives the methylsulfone moiety, which provides the template for investigating the solution-phase nucleophilic substitution at position 2 with different amines.⁷

A model case is reported in Scheme 2 where a 2.5-fold excess of *N*-phenylpiperazine is refluxed in dioxane with

Scheme 1.


Scheme 2. Reagents and conditions: (i) *S*-methyl isothiourea, TEA, anhydrous ethanol, reflux, 3 h, 55%; (ii) anhydrous K_2CO_3 , benzoyl peroxide, NBS, anhydrous dioxane, 90 °C, 3 h, 92%; (iii) $POCl_3$, reflux, 2 h, 50%; (iv) *tert*-butyl 4-aminobenzoate (2 equiv), DIPEA, dioxane, reflux, 72 h, 81%; (v) $NaBH_4$, anhydrous ethanol, 45 °C, 4 h, 82%; (vi) MnO_2 , CH_2Cl_2 , rt, overnight, 70%; (vii) $Ph_3PCHCOOEt$, anhydrous THF, reflux, 2.5 h, 94%; (viii) DIPEA/DBU (10:1 v/v), reflux, 30 h, 71%; (ix) MCPBA, CH_2Cl_2 , rt, 1.5 h, 87%; (x) 4-phenylpiperazine (2.5 equiv), dioxane, reflux, 0.5 h, 87%; (xi) TFA, CH_2Cl_2 , rt, 8 h, 95%; (xii) oxalyl chloride, anhydrous DMF, CH_2Cl_2 , rt, 2 h, 95%; (xiii) benzylamine, TEA, CH_2Cl_2 , rt, 78%.

the sulfone for half an hour to give compound **E** in good yield. These conditions proved to be optimal not only for primary and secondary aliphatic amines but also the less reactive aromatic amines such as ethyl *para*-aminobenzoate. Finally **E** is readily converted into the corresponding acid chloride and coupled with benzyl amine to afford **F**. The reaction sequence depicted in **Scheme 2** involves a reverse addition order of amine R_1R_2NH and R_3NH_2 on the scaffold with respect to the solid-phase.

The solid-phase route is reported in **Scheme 3** where the intermediate **D** previously described is converted in good yield into the corresponding chloride **G** after deprotection with trifluoroacetic acid and activation with oxalyl chloride. Then the intermediate **G** is coupled to the resin-bound amine **A₁**, prepared by reductive amination with $NaBH(AcO)_3$ of the selected amines R_3NH_2 (see **Table 1** both for residues R_3 and for R_1R_2N) condensed with a formyl resin [4-(4-formyl-3-methoxyphenoxy)butyrylaminomethyl resin]. Oxidation

of the polymer-supported intermediate **A₂** with MCPBA affords sulfone **A₃**, which is then subjected to aromatic substitution at 60 °C in THF using 6 equiv of different amines R_1R_2NH . Final release of intermediate **A₄** from the solid support under acidic conditions with trifluoroacetic acid completes the preparation of the library. Thus 16 different amines were selected for nucleophilic substitution at position 2 of the scaffold **A₃** bearing nine diverse residues R_3 . This achieves 126 final compounds having general formula **H**, with overall yields ranging from 50% to 80% and good purity. All the compounds were characterized by HPLC-MS and 1H NMR technique. A representative selection of 10 different final compounds is reported in **Table 1** with their HPLC-MS purity and yields.^{8,9}

In conclusion we have developed a useful methodology to prepare in a scalable way a pyrido[2,3-*d*]pyrimidin-7-one scaffold and to build on solid-phase a library of 126 compounds with double diversity.

Scheme 3. Reagents and conditions: (i) TFA, CH_2Cl_2 , rt, 2 h, 95%; (ii) oxalyl chloride, anhydrous DMF, CH_2Cl_2 , rt, 2 h, 95%; (iii) A_1 ($\text{R}_3\text{NH-Y-Pol}$), CH_2Cl_2 , TEA (10 equiv), rt, overnight; (iv) MCPBA, CH_2Cl_2 , rt, 1.5 h; (v) $\text{R}_1\text{R}_2\text{NH}$ 6 equiv, TEA 6 equiv, THF, 60 °C, 1 h; (vi) TFA/ CH_2Cl_2 (50%, v/v), rt, 1.25 h; (vii) R_3NH_2 , THF/ CH_2Cl_2 (4:1, v/v), AcOH, $\text{NaBH}(\text{OAc})_3$, rt, overnight.

Table 1. Pyrido[2,3-d]pyrimidin-7-ones **H** produced via Scheme 3

Product	$\text{R}_1\text{R}_2\text{N}$	R_3	Yield (%) ^a	Purity (%) ^b
H₁			50	90
H₂			55	80
H₃			74	90
H₄			60	62
H₅			78	90
H₆			65	80
H₇			60	70
H₈			57	90
H₉			67	54
H₁₀			75	90

^a Four-step overall yields from **G**.

^b All the crude products purities are calculated by HPLC-MS at $\lambda = 254$ nm.

To the best of our knowledge, this represents the first combinatorial expansion on this versatile scaffold reported in the literature.

References and notes

1. VanderWel, S. N.; Harvey, P. J.; McNamara, D. J.; Repine, J. T.; Keller, P. R.; Quin, J., III; Booth, R. J.; Elliott, W. L.; Dobrusin, E. M.; Fry, D. W.; Toogood, P. L. *J. Med. Chem.* **2005**, *48*, 2371–2387.
2. Toogood, P. L.; Harvey, P. J.; Repine, J. T.; Sheehan, D. J.; VanderWel, S. N.; Zhou, H.; Keller, P. R.; McNamara, D. J.; Sherry, D.; Zhu, T.; Brodfuehrer, J.; Choi, C.; Barvian, M. R.; Fry, D. W. *J. Med. Chem.* **2005**, *48*, 2388–2406.
3. Kasparec, J.; Adams, J. L.; Sisko, J.; Silva, D. J. *Tetrahedron Lett.* **2003**, *44*, 4567–4570.
4. Barvian, M.; Boschelli, D. H.; Crossrow, J.; Dobrusin, E.; Fattaey, A.; Fritsch, A.; Harvey, P.; Keller, P.; Garrett, M.; La, F.; Leopold, W.; McNamara, D.; Quin, M.; Trumpp-Kallmeyer, S.; Toogood, P.; Wu, Z.; Zhang, E. *J. Med. Chem.* **2000**, *43*, 4606–4616.
5. Klutchko, S. R.; Hamby, J. M.; Boschelli, D. H.; Wu, Z.; Kraker, A. J.; Amar, A. M.; Hartl, B. G.; Shen, C.; Klohs, W. D.; Steinkampf, R. W.; Driscoll, D. L.; Nelson, J. M.; Elliott, W. L.; Roberts, B. J.; Stoner, C. L.; Vincent, P. W.; Dykes, D. J.; Panek, R. L.; Lu, G. H.; Major, T. C.; Dahring, T. K.; Hallak, H.; Bradford, L. A.; Showalter, H. D. H.; Doherty, A. M. *J. Med. Chem.* **1998**, *41*, 3276–3292.
6. Boschelli, D. H.; Wu, Z.; Klutchko, S. R.; Showalter, H. D. H.; Hamby, J. M.; Lu, G. H.; Major, T. C.; Dahring, T. K.; Batley, B.; Panek, R. L.; Keiser, J.; Hartl, B. G.; Kraker, A. J.; Klohs, W. D.; Roberts, B. J.; Patmore, S.; Elliott, W. L.; Steinkampf, R. W.; Bradford, L. A.; Hallak, H.; Doherty, A. M. *J. Med. Chem.* **1998**, *41*, 4365–4377.
7. Veale, C. A.; Steelman, G. B.; Chow, M. M. *J. Org. Chem.* **1993**, *58*, 4490–4493.
8. Felder, E. R.; Martina, K.; Scarpella, S.; Tatò, M. *CHIMIA* **2003**, *57*, 229–236.
9. Typical procedure for solid-phase: Synthesis of *N*-benzyl-4-[4-methyl-7-oxo-2-(4-pyrimidin-2-yl-piperazin-1-yl)-7*H*-pyrido[2,3-*d*]pyrimidin-8-yl]benzamide (compound **H**₁). Preparation of polymer supported benzylamine **A**₁ by reductive amination: To a suspension of 4-(4-formyl-3-methoxyphenoxy)butyrylaminomethyl resin (AMEBA resin) (500 mg, 0.40 mmol, loading 0.59 mmol/g, 100–200 mesh, 1% DVB, Novabiochem) in 5 ml of THF/DCM (4:1, v/v) benzylamine (260 μ l, 2.40 mmol) and AcOH (135 μ l, 2.40 mmol) were added. Shaking continued for 15 min, then NaBH(AcO)₃ (250 mg, 1.20 mmol) was added and shaking was continued over-night at room temperature. The completion of the reaction was confirmed by disappearance of the formyl signal via solid-phase NMR technique. The resin was washed with MeOH (2 \times 1 min), DMF (2 \times 1 min), DCM (1 \times 1 min), MeOH (1 \times 1 min) and DCM (3 \times 1 min). The resin was dried at 30 °C at 10 Torr for 2 h.
- Polymer supported *N*-benzyl-4-[4-methyl-7-oxo-2-methylsulfanyl-7*H*-pyrido[2,3-*d*]pyrimidin-8-yl]benzamide **A**₂: To a suspension of polymer supported benzylamine **A**₁ (0.40 mmol) in 15 ml of DCM and TEA (0.82 ml, 5.9 mmol), 4-[4-methyl-7-oxo-2-methylsulfanyl-7*H*-pyrido[2,3-*d*]pyrimidin-8-yl]benzoyl chloride was added and the mixture was shaken over-night at room temperature. This was then filtered and the resin was washed in the following order: DMF (3 \times 1 min), DCM/MeOH (1:1, v/v, 3 \times 1 min), DCM (3 \times 1 min), MeOH (1 \times 1 min) and DCM (3 \times 1 min). The resin so achieved was dried for 2 h at 10 Torr and 30 °C.
- Polymer supported *N*-benzyl-4[4-methyl-7-oxo-2-methylsulfonyl-7*H*-pyrido[2,3-*d*]pyrimidin-8-yl]benzamide **A**₃: The resin **A**₂ (ca. 45 mg, 0.0214 mmol) was suspended in 1 ml of DCM and treated for 1.5 h with MCPBA (14.3 mg, 0.064 mmol) at room temperature. The resin **A**₃ was then washed with dioxane (2 \times 1 min) and DCM (2 \times 1 min).
- Polymer supported *N*-benzyl-4-[4-methyl-7-oxo-2-(1-piperazinyl)-7*H*-pyrido[2,3-*d*]pyrimidin-8-yl]benzamide **A**₄: To a mixture of resin **A**₃ in 1 ml of THF and TEA (14 mg, 0.13 mmol) was added the respective amine (0.13 mmol) and shaking was continued for 1 h at 60 °C. The resin **A**₄ was then washed with THF (2 \times 1 min), DMF (3 \times 1 min) and DCM (3 \times 1 min).
- Release of product **H**₁ from the resin **A**₄: Resin **A**₄ was treated with a mixture of TFA/DCM (1 ml, 50% v/v) for 75 min. The resin was filtered, washed with DCM (1 \times 1 min) and the combined organic layers were evaporated yielding compound **H**₁. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.18 (t, 1H), 8.34 (d, 2H), 8.03 (m, 3H), 7.47 (m, 7H), 6.62 (t, 1H), 6.36 (d, 1H), 4.51 (d, 2H), 3.62 (m, 4H), 3.33 (m, 4H), 2.58 (s, 3H); LC/MS (ESI): *m/z* 647 (M+H).